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Dissipative processes cause collisionless plasmas in many systems to develop nonthermal
particle distributions with broad power-law tails. The prevalence of power-law energy
distributions in space/astrophysical observations and kinetic simulations of systems with
a variety of acceleration and trapping (or escape) mechanisms poses a deep mystery.
We consider the possibility that such distributions can be modeled from maximum-
entropy principles, when accounting for generalizations beyond the Boltzmann-Gibbs
entropy. Using a dimensional representation of entropy (related to the Renyi and Tsallis
entropies), we derive generalized maximum-entropy distributions with a power-law tail
determined by the energy scale at which irreversible dissipation occurs. By assuming
that particles are energized by an amount comparable to the free energy (per particle)
before equilibrating, we derive a formula for the power-law index as a function of plasma
parameters for magnetic dissipation in systems with sufficiently complex topologies. The
model reproduces several results from kinetic simulations of relativistic turbulence and
magnetic reconnection.

1. Introduction

Nonthermal energetic particles are ubiquitous in collisionless plasmas, being observed
in laboratory experiments, planetary magnetospheres (Birn et al. 2012), the solar wind
(Fisk & Gloeckler 2007), the solar corona (Aschwanden 2002), and high-energy astrophys-
ical systems. It was long recognized that nonthermal particles are a generic consequence of
collisionless plasma physics, as the absence of Coulomb collisions precludes relaxation to a
thermal equilibrium (e.g., Fermi 1949, 1954; Parker & Tidman 1958). More recently, first-
principles numerical simulations demonstrated efficient particle acceleration from shocks
(Spitkovsky 2008; Sironi & Spitkovsky 2010; Caprioli & Spitkovsky 2014), magnetic
reconnection (Sironi & Spitkovsky 2014; Guo et al. 2014; Werner et al. 2016; Li et al.
2019), relativistic turbulence (Zhdankin et al. 2017; Comisso & Sironi 2018), and various
instabilities (e.g., Hoshino 2013; Kunz et al. 2016; Nalewajko et al. 2016; Alves et al.
2018; Ley et al. 2019; Sironi et al. 2021). In observations and simulations, particle energy
distributions frequently exhibit power-law tails in which the index α can range from
hard (α ∼ 1) to soft (α� 1) values, depending on system parameters. Determining why
power-law distributions form and predicting α as a function of parameters are topics of
fundamental importance.

This Letter explores the possibility that power-law distributions in collisionless plasmas
can be explained by maximum-entropy principles, when considering nonextensive entropy
measures beyond the traditional Boltzmann-Gibbs (BG) entropy. There is no a priori
reason for a collisionless plasma to relax to a state of maximum BG entropy. Given that
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plasma dissipation processes are macroscopically irreversible, the question is then, what
type of entropy (if any) does a collisionless plasma maximize upon equilibration?

A framework for quantifying generalized entropy based on dimensional representations
of entropy derived from the Casimir invariants of the Vlasov equation was recently
developed in Zhdankin (2021). This framework shares similarities to the nonextensive
entropies of Renyi (Rényi 1961) and Tsallis (Tsallis 1988), but enables a connection with
irreversible processes occurring at various energy scales within the plasma. Using this
framework, we derive a generalized maximum-entropy (GME) distribution (equivalent to
the Tsallis distribution) that has a power-law tail at high energies, resembling numerical
and observational results in the literature. For a given number of particles and kinetic
energy content, there is only one unconstrained free parameter (linked to α), determined
by the energy scale at which entropy is maximized.

After deriving the GME distribution, we propose a model for determining the power-
law index α as a function of physical parameters, for systems governed by magnetic
dissipation with sufficiently complex topologies. By assuming that particles are energized
by an amount comparable to the free energy per particle before equilibrating, we derive an
equation for α versus plasma beta and fluctuation amplitude, indicating that nonthermal
particle acceleration is efficient when β is low and fluctuations are strong. We compare
the model predictions to numerical results from the literature on relativistic turbulence
and magnetic reconnection, showing that the model is able to reproduce some observed
trends such as the scaling of α with the magnetization σ. The GME model also provides
a resolution for why power-law distributions are often similar for distinct processes (with
diverse escape/trapping mechanisms) and for varying spatial dimensionality (2D versus
3D).

The GME framework provides a route to understanding particle acceleration that is
distinct from standard approaches based on quasilinear theory and its extensions. The
limitations and applicability of the model are further discussed in the conclusions.

2. Model for generalized maximum-entropy distribution

Consider a collisionless plasma in a closed system. The evolution of the fine-grained
particle distribution for a given species can be represented by the (relativistic) Vlasov
equation,

∂tf + v · ∇f + F · ∂pf = 0 , (2.1)

where f(x,p, t) is the particle momentum distribution function (normalized such that∫
d3pd3xf = N is the total number of particles), v = pc/(m2c2 + p2)1/2 is the particle

velocity (with m the particle mass), and F (x,p, t) is a phase-space conserving force field
(∂p · F = 0), containing the electromagnetic force and external forces. Eq. 2.1 can be
applied to any particle species, with appropriate F . We denote particle kinetic energy
by E(p) = (m2c4 + p2c2)1/2 −mc2 and the system-averaged kinetic energy by E.

The Vlasov equation formally conserves the BG entropy S = −
∫
d3xd3pf log f as well

as an infinite set of quantities known as the Casimir invariants. The latter can be manip-
ulated to yield quantities with dimensions of momentum, introduced in Ref. (Zhdankin
2021) as the Casimir momenta:

pc,χ(f) ≡ n1/30

(
1

N

∫
d3xd3pfχ

)−1/3(χ−1)
, (2.2)

where n0 is the mean particle number density and χ > 0 is a free index that param-
eterizes the weight toward different regions of phase space: large (small) values of χ
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are sensitive to low (high) energies. The phase-space integral in Eq. 2.2 resembles those
used in the nonextensive entropies of Renyi (Rényi 1961) and Tsallis (Tsallis 1988).
The Casimir momenta, however, manipulate this integral into a dimensional form that
is interpretable physically. In particular, the anomalous growth of pc,χ is indicative of
irreversible entropy production at the corresponding momentum scale in phase space
(with χ → 0 corresponding to momenta far in the tail, and χ → ∞ corresponding to
momenta near the mode).

As described in Zhdankin (2021), pc,χ share many properties with the BG entropy
S: 1) they reduce to a dimensionalized version of the BG entropy when χ → 1, as

pc,χ→1 = n
1/3
0 eS/3N ; 2) they are maximized when f is isotropic and uniform; and 3) while

ideally conserved by the Vlasov equation, the formation of fine-scale structure breaks
conservation of pc,χ for f measured at coarse-grained scales. Zhdankin (2021) also argued
that pc,χ associated with coarse-grained f will tend to increase (irreversibly) when energy
is injected into the system, for generic complex processes; this was demonstrated by 2D
kinetic simulations of relativistic turbulence. Phenomena such as the entropy cascade
may lead to anomalous entropy production through finite collisionality (Schekochihin
et al. 2009; Eyink 2018).

The infinite number of generalized entropies represented by pc,χ complicates the
application of a maximum entropy principle. Only when dissipation occurs collisionally
or at small enough energy scales (χ ∼ 1) is the BG entropy maximized. In general,
mechanisms of anomalous entropy production can operate over a spectrum of scales, so a
scale-by-scale understanding of the plasma physical processes is necessary to model the
system.

In this Letter, we consider the idealized situation where entropy is maximized at a single
energy scale, represented by pc,χd with a given index χd where the subscript d denotes
“dissipation”. Suppose that the system evolves to maximize pc,χd . The GME distribution
is uniform and isotropic f(p,x) = f(p), and can be derived from the functional

L = N1/3

(∫
d3pfχd/N

)−1/3(χd−1)
− λ1

(∫
d3pf −N

)
− λ2

[∫
d3pE(p)f −NE

]
,

where λi are Lagrange multipliers enforcing number and energy constraints. By requiring
δL = 0 upon variations of the distribution δf , we obtain

p3χd−2c,χd
χdf

χd−1

3(1− χd)N2/3
− λ1 − λ2E(p) = 0 (2.3)

which leads to the GME distribution

f = C [E(p)/Eb + 1]
−1/(1−χd) , (2.4)

where C and Eb are the normalization factor and characteristic energy, determined by
requiring 4π

∫
dpp2f = N and 4π

∫
dpp2E(p)f = NE. Note that Eq. 2.4 is operationally

equivalent to the Tsallis distribution (Tsallis 1988). We will restrict our attention to
χd < 1, in which case there is a power-law tail (whereas χd > 1 would lead to a narrow
distribution with sharp cutoff). The derivation of Eq. 2.4 from maximizing a dimensional
representation of generalized entropy is the first main result of this work.

In the ultra-relativistic (UR) limit, E � mc2, the GME distribution (Eq. 2.4) becomes

f
UR−−→ C(p/pb + 1)−α−2 (2.5)

where α = (2χd − 1)/(1 − χd), C = N(α − 1)α(α + 1)/8πp3b , and pb = (α − 2)E/3c. In
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the non-relativistic (NR) limit, E � mc2, Eq. 2.4 becomes

f
NR−−→ C

(
p2/p2b + 1

)−α−1/2
(2.6)

where α = (1 + χd)/2(1 − χd), C = NΓ (α + 1/2)/π3/2p3bΓ (α − 1), and pb = [4(α −
2)mE/3]1/2. The NR expression (Eq. 2.6) is equivalent to the kappa distribution that
is widely used to model nonthermal distributions in space plasmas (e.g., Pierrard &
Lazar 2010; Livadiotis & McComas 2013) and was previously shown to arise from Tsallis
statistics (Milovanov & Zelenyi 2000; Leubner 2002; Livadiotis & McComas 2009).

In both limits, we used α to denote the power-law index of the corresponding energy
distribution,

F (E) =
dp

dE
4πp2f(p)|p=[E(E+2mc2)]1/2/c , (2.7)

such that F (E) ∝ E−α at high energies. Since the GME distribution has an infinite
extent in energy, α > 2 is necessary for finite E. Thus, the domain is 3/4 < χd < 1 for
the UR case and 3/5 < χd < 1 for the NR case. Also note that χd → 1 (α→∞) recovers
the thermal (Maxwell-Jüttner) distribution, using the identity (A/x + 1)−x = e−A as
x→∞ for any A.

3. Model for power-law index

Suppose that the dynamics are sufficiently complex to cause the initial distribution
(which is arbitrary) to evolve into the GME state. For this state to be maintained with
a constant index α in an evolving system, pc,χ for all χ must grow in proportion with
the mean momentum, preserving their relative hierarchy. One can then compare the
momentum at which entropy is maximized, pc,χd , with the momentum of the typical
particle given by pc,∞ (note that pc,∞ lies close to pb). Evaluating pc,χd/pc,∞ using
Eq. 2.2 with the GME distribution (Eq. 2.4), one obtains in the UR limit:

pc,χd
pc,∞

UR−−→
(
α+ 1

α− 2

)(α+2)/3

, (3.1)

and in the NR limit:

pc,χd
pc,∞

NR−−→
(
α− 1/2

α− 2

)(2α+1)/6

. (3.2)

This relates the power-law index α to the maximum-entropy scale, which can be modeled
phenomenologically (as considered below). In Fig. 1, we show α versus pc,χd/pc,∞,
separately for the UR (Eq. 3.1) and NR (Eq. 3.2) limits. Note the divergence α→∞ when
pc,χd/pc,∞ → e ≈ 2.72 (UR case) or pc,χd/pc,∞ → e1/2 ≈ 1.65 (NR case). Thus, if entropy
is maximized at momentum scales sufficiently close to the peak of the distribution, then
a thermal distribution is recovered (similar to a collisional plasma). When pc,χd/pc,∞
becomes larger than a factor of few, the nonthermal state is obtained, with α → 2 for
pc,χd/pc,∞ � 1. Thus, in both the UR and the NR limit, the distribution will relax to the
nonthermal state if entropy is maximized at momenta scales in the tail of the distribution.

Physical considerations are necessary to determine pc,χd/pc,∞ as a function of system
parameters, from which one can extract α. In general, this will need to be informed by
numerical simulations and analytical considerations for the given process.

For this Letter, we consider a simplified scenario to estimate the momentum scale
of maximum entropy that arises from the dissipation of magnetic energy in complex
field topologies (via magnetic reconnection, turbulence, or instabilities). We suppose
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Figure 1. The energy power-law index α of the GME distribution versus the ratio between
the entropy-maximizing momentum pc,χd and the typical momentum pc,∞ (Eqs. 3.1-3.2). The
UR (red) and NR (blue) limits are shown separately, with dashed lines indicating singularities.

that rather than being energized at the thermal energy scale, the typical particles are
energized by an amount comparable to the free magnetic energy per particle, Efree =
δB2/8πn0, over a dynamical timescale, before equilibrating to the GME state. Here, δB
is the characteristic magnetic field fluctuation, while we denote the background (non-
dissipating) component by B0. We denote the energy corresponding to the Casimir
momenta by Ec,χ = E(pc,χ) and the typical particle energy as E0, noting that the
thermal dissipation energy scale is eE0. The model posits that Ec,χd ∼ eE0 + ηEfree

where η is an order-unity coefficient describing the portion of free energy converted. We
can then write

pc,χd
pc,∞

=
[
Ec,χd (Ec,χd+2mc2)

Ec,∞(Ec,∞+2mc2)

]1/2
∼
[
(eE0+ηEfree)(eE0+ηEfree+2mc2)

E0(E0+2mc2)

]1/2
∼
[
[e+η(δB/B0)

2/βc][e+η(δB/B0)
2/βc+2/θc]

1+2/θc

]1/2
, (3.3)

where θc = E0/mc
2 is a characteristic dimensionless temperature and βc = 8πn0E0/B

2
0 is

a characteristic plasma beta for the particle species (which may differ from the standard
plasma beta, β0 = 8πn0T/B

2
0 where T is species temperature, by a factor of order unity).

Equating Eq. 3.3 with either Eq. 3.1 or Eq. 3.2 yields an implicit equation for α as a
function of βc, δB/B0, and θc in the appropriate limit. The physical parameters required
to achieve a given value of α can then be expressed in the UR limit (θc � 1) as:

η

(
δB

B0

)2
1

βc

UR
=

(
α+ 1

α− 2

)(α+2)/3

− e , (3.4)
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Figure 2. The energy power-law index α of the GME distribution versus physical parameters
η(δB/B0)2/βc for the magnetic dissipation model. The UR (red; Eq. 3.4) and NR (blue; Eq. 3.5)
limits are shown separately.

and in the NR limit (θc � 1) as:

η

(
δB

B0

)2
1

βc

NR
=

(
α− 1/2

α− 2

)(2α+1)/3

− e . (3.5)

The predicted scaling of α given by Eqs. 3.4-3.5 is the second main result of this work.
The right hand side of both equations becomes zero when α → ∞, indicating that the
thermal distribution is recovered for high beta or weak fluctuations, (δB/B0)2/βc � 1.
On the other hand, the nonthermal state is obtained when (δB/B0)2/βc & 1, for both
UR and NR regimes. For (δB/B0)2/βc � 1, α→ 2. The scaling is plotted in Fig. 2.

4. Comparison to simulations

To validate the GME model, we remark on how the predictions compare to existing
results from kinetic simulations of relativistic turbulence and magnetic reconnection in
the literature.

In Fig. 3, we show the global particle energy distribution F (E) arising in a 15363-
cell particle-in-cell (PIC) simulation of driven relativistic turbulence (with δB/B0 ≈ 1)
studied in Refs. (Zhdankin et al. 2018; Wong et al. 2020). The simulation begins with
a Maxwell-Jüttner distribution of electrons and positrons with UR temperature θ =
T/mec

2 = 100 and initial magnetization σ0 = 3/8. The magnetization is defined as the
ratio of the magnetic enthalpy to plasma enthalpy, and is related to species plasma beta
by σ0 = 1/(4β0) in the UR regime; thus β0 = 2/3. The simulation develops a nonthermal
tail with index α ≈ 3. We find that the GME distribution of Eq. 2.5 provides a fair
fit to the fully developed state when we choose χd = 0.815, as shown by the dashed
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Figure 3. Energy distribution F (E) in PIC simulation of relativistic turbulence for various
times, compared to the GME distribution (dashed; Eq. 2.5) with χd = 0.815.

line in Fig. 3. The fit over-predicts the number of particles at energies below the peak,
indicating that relaxation to the GME state is incomplete (possible reasons for this will be
described in the conclusions). The PIC simulations of decaying, magnetically-dominated
turbulence by Comisso & Sironi (2019) also appear to resemble the GME state. Thus,
we believe that the GME model provides a reasonable (if imperfect) representation of
available numerical data on relativistic turbulence.

We next consider the model for the power-law index α from magnetic dissipation. In
Fig. 4, we compare the predicted α versus σ scaling (Eq. 3.4 with βc = 1/4σ, δB/B0 =
1, η = 1) with results in the literature on relativistic turbulence in pair plasma. PIC
simulations of driven relativistic turbulence indicate that the power-law index is well-
described by the empirical formula α ≈ α∞+C0σ

−0.5, with α∞ ≈ 1 and C0 ≈ 1.5 for large
sizes (Zhdankin et al. 2017, 2018), shown in Fig. 4 (blue); note that a similar formula with
different coefficients was also suggested for relativistic magnetic reconnection (Werner
et al. 2018; Ball et al. 2018; Uzdensky 2022). We also show approximate data points
from the 2D decaying relativistic turbulence simulations of Comisso & Sironi (2019)
(red). The model is able to explain the trends in the numerical simulations fairly well, up
to a factor of order unity in σ. Fits to the simulation data can be improved by adjusting η,
noting that driven turbulence would effectively have a larger η than decaying turbulence.
Additionally, we note that Comisso & Sironi (2019) finds that α increases with decreasing
δB/B0, consistent with the GME prediction.

In addition to these quantitative comparisons, the GME model provides a resolution to
several mysterious findings from kinetic simulations in the literature. Kinetic simulations
of disparate processes (turbulence, magnetic reconnection, and instabilities) often exhibit
very similar power-law distributions for given plasma parameters. For example, PIC
simulations find comparable nonthermal particle acceleration from magnetic dissipation
with different current sheet geometries and ensuing dynamics (e.g., Werner & Uzdensky
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Figure 4. Energy power-law index α versus magnetization σ from the GME model in the
UR limit (black; Eq. 3.4 with βc = 1/4σ, δB/B0 = 1, and η = 1) compared to empirical
fitting formula α ≈ α∞ + C0σ

−0.5 from PIC simulations of driven relativistic turbulence in
Ref. (Zhdankin et al. 2017) (blue). Also shown is the approximate range of indices from PIC
simulations of decaying relativistic turbulence from Ref. (Comisso & Sironi 2019) (their Fig. 5
inset; red).

2021). PIC simulations of relativistic turbulence find that nonthermal particle distribu-
tions have a similar shape for different driving mechanisms (electromagnetic, solenoidal,
compressive, imbalanced), despite different timescales to arrive at those distributions
(Zhdankin 2021; Hankla et al. 2022). The universality revealed by these findings may be
explained by all of the processes having sufficient complexity to attain a GME state at
similar energy scales.

Kinetic simulations also indicate that nonthermal particle distributions formed by
relativistic magnetic reconnection (Werner & Uzdensky 2017; Guo et al. 2021) and
turbulence (Comisso & Sironi 2019) are insensitive to the number of spatial dimensions
(2D vs 3D), despite different secondary instabilities, cascades, and trapping mechanisms
(e.g., long-lived plasmoids in 2D). The GME framework predicts that the distributions
are insensitive to the number of spatial dimensions, as long as there are sufficient degrees
of freedom to attain such a state.

The GME model predicts similar acceleration efficiency in the NR regime as in the UR
regime. PIC simulations in the NR regime are generally constrained in scale separation,
which may limit power-law formation. However, recent PIC simulations of NR magnetic
reconnection provide some evidence for (steep) power-law distributions at low β (Li et al.
2019). Recent simulations of reduced kinetic models indicate efficient electron acceleration
by NR magnetic reconnection at macroscopic scales when δB/B0 is moderate (Arnold
et al. 2021), lending support to the GME model. Further benchmarking of the model in
the NR regime is deferred to future work.



Maximum entropy 9

5. Conclusions

This Letter provides an analytical model for power-law nonthermal distributions that
arise in collisionless plasmas due to generic energization processes. Unlike many works
in the literature, this model is based on maximum entropy principles (of a generalized,
non-BG form), rather than the details of the microscopic mechanisms that ultimately
enable (or counteract) the acceleration. The GME distribution (Eqs. 2.4-2.6) provides a
physically-motivated reduced model for nonthermal particle populations. Likewise, the
model for the power-law index α of the equilibrium distribution versus plasma parameters
(Eqs. 3.4-3.5) may be a useful prescription for systems where magnetic dissipation is the
key energizer (e.g., magnetic reconnection, turbulence, and some instabilities). Further
comparison to kinetic simulations will be essential for benchmarking the validity of the
model and determining a more rigorous closure for pc,χd/pc,∞.

There are several physical effects that may prevent the nonthermal GME state de-
scribed in this Letter from being attained in some systems. First and foremost, the
competition of entropy production mechanisms at multiple scales would invalidate the
core assumption of the distribution being governed by pc,χ at a single dominant value
of the index χ = χd. Second, the time-dependence of physical parameters may cause
pc,χd/pc,∞ to vary over time, leading to hysteresis that is not accounted for in the model.
These assumptions may be relaxed in future iterations of the model.

Another effect that may prevent the GME state from being attained is anisotropy of
the momentum distribution (at macroscopic scales). This may occur if the energization
mechanisms are strongly anisotropic with respect to the large-scale magnetic field and
pitch angle scattering is inefficient. Anisotropy reduces the entropy and thus prevents
complete relaxation to the (isotropic) GME state.

The GME model indicates that particle acceleration will be inefficient if the mech-
anisms of entropy production are localized at energy scales near the thermal energy
(Landau damping being one such example). This may be the situation for simplified
or dynamically constrained setups such as the collision of Alfvén waves (Nättilä &
Beloborodov 2022), 2D NR magnetic reconnection (Dahlin et al. 2017; Li et al. 2019), or
magnetic reconnection in a strong guide field (Werner & Uzdensky 2017; Arnold et al.
2021).

Nonthermal particle acceleration is usually modeled in the language of quasilinear
theory, involving concepts such as the Fokker-Planck equation (or its extensions), pitch-
angle scattering, and trapping (or escape) mechanisms (see, e.g., Kulsrud & Ferrari 1971;
Blandford & Eichler 1987; Schlickeiser 1989; Chandran 2000; Isliker et al. 2017; Lemoine
& Malkov 2020; Demidem et al. 2020; Lemoine 2021; Vega et al. 2022). The maximum-
entropy model proposed in this Letter stands in stark contrast to these conventional
approaches, being only weakly dependent on the physical ingredients responsible for
enabling the GME state. The two frameworks are not mutually exclusive, however,
as the GME distribution may be maintained by a broad class of Fokker-Planck diffu-
sion/advection coefficients (e.g., Shizgal 2018). It is important for future work to bridge
the two mathematical frameworks.

The author thanks Dmitri Uzdensky, Mitch Begelman, Greg Werner, and Yuri Levin
for helpful discussions during the early stages of this project. Research at the Flatiron
Institute is supported by the Simons Foundation.
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